Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation
نویسنده
چکیده
Approximate joint diagonalization of a set of matrices is an essential tool in many blind source separation (BSS) algorithms. A common measure of the attained diagonalization of the set is the weighted least-squares (WLS) criterion. However, most well-known algorithms are restricted to finding an orthogonal diagonalizing matrix, relying on a whitening phase for the nonorthogonal factor. Often, such an approach implies unbalanced weighting, which can result in degraded performance. In this paper, we propose an iterative alternating-directions algorithm for minimizing the WLS criterion with respect to a general (not necessarily orthogonal) diagonalizing matrix. Under some mild assumptions, we prove weak convergence in the sense that the norm of parameters update is guaranteed to fall below any arbitrarily small threshold within a finite number of iterations. We distinguish between Hermitian and symmetrical problems. Using BSS simulations results, we demonstrate the improvement in estimating the mixing matrix, resulting from the relaxation of the orthogonality restriction.
منابع مشابه
A new non-orthogonal approximate joint diagonalization algorithm for blind source separation
A new algorithm for approximate joint diagonalization of a set of matrices is presented. Using a weighted leastsquares (WLS) criterion, without the orthogonality constraint, it is compared with an analoguous algorithm for blind source separation (BSS). The criterion of our algorithm is on the separating matrix while the other is on the mixing matrix. The convergence of our algorithm is proved u...
متن کاملA Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation
A new efficient algorithm is presented for joint diagonalization of several matrices. The algorithm is based on the Frobenius-norm formulation of the joint diagonalization problem, and addresses diagonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm is based on a multiplicative update which ensures the invertibility of the diagonalizer. The algorith...
متن کاملA Linear Least-squares Algorithm for Joint Diagonalization
We present a new approach to approximate joint diagonalization of a set of matrices. The main advantages of our method are computational efficiency and generality. We develop an iterative procedure, called LSDIAG, which is based on multiplicative updates and on linear least-squares optimization. The efficiency of our algorithm is achieved by the first-order approximation of the matrices being d...
متن کاملOn The Use of Non-orthogonal Approximate Joint Diagonalization Algorithms for Blind Source Separation in Presence of Additive Noise
We present in this paper a non-orthogonal algorithm for the approximate joint diagonalization of a set of matrices. It is an iterative algorithm, using relaxation technique applied on the rows of the diagonalizer. The performances of our algorithm are compared with usual standard algorithms using blind sources separation simulations results. We show that the improvement in estimating the separa...
متن کاملA fast algorithm for joint diagonalization with application to blind source separation
We present a new approach to approximate joint diagonalization of a set of matrices. The main advantages of our method are computational efficiency and generality. The algorithm is based on the Frobeniusnorm formulation of the joint diagonalization problem, and addresses diagonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm inherits the key ideas f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 50 شماره
صفحات -
تاریخ انتشار 2002